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ABSTRACT

Systemic insecticides such as neonicotinoids and sulfoximines can be present in the
nectar and pollen of treated crops, through which foraging bees can become acutely
exposed. Research has shown that acute, field realistic dosages of neonicotinoids can
negatively influence bee learning and memory, with potential consequences for bee
behaviour. As legislative reassessment of neonicotinoid use occurs globally, there is an
urgent need to understand the potential risk of other systemic insecticides. Sulfoxaflor,
the first branded sulfoximine-based insecticide, has the same mode of action as
neonicotinoids, and may potentially replace them over large geographical ranges. Here
we assessed the impact of acute sulfoxaflor exposure on performance in two paradigms
that have previously been used to illustrate negative impacts of neonicotinoid pesticides
on bee learning and memory. We assayed whether acute sulfoxaflor exposure influences
(a) olfactory conditioning performance in both bumblebees (Bombus terrestris) and
honeybees (Apis mellifera), using a proboscis extension reflex assay, and (b) working
memory performance of bumblebees, using a radial-arm maze. We found no evidence
to suggest that sulfoxaflor influenced performance in either paradigm. Our results
suggest that despite a shared mode of action between sulfoxaflor and neonicotinoid-
based insecticides, widely-documented effects of neonicotinoids on bee cognition may
not be observed with sulfoxaflor, at least at acute exposure regimes.

Subjects Animal Behavior, Conservation Biology, Entomology, Ecotoxicology, Environmental
Impacts

Keywords Sulfoxaflor, Bumblebees, Neonicotinoid, Radial-arm maze, Spatial-working memory,
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INTRODUCTION

Bees provide vital pollination services for both wild flowers and commercial crops (Rader
et al., 2016; Fijen et al., 2018), so localised declines in domestic honey bee populations
and both localised and global range reductions of certain bumblebee species have led
to suggestions that a global pollination crisis could be imminent (Biesmeijer et al., 20065
Colla & Packer, 2008; Aizen ¢ Harder, 2009; Williams ¢ Osborne, 2009; Potts et al., 2010;
Cameron et al., 2011; Kerr et al., 2015; Goulson et al., 2015). Although the intensification
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of agriculture, habitat loss, global warming and pathogen exposure have all been linked
with bee declines (Brown ¢ Paxton, 2009; Winfree et al., 2009; Cameron et al., 2011; Kerr et
al., 2015; Goulson et al., 2015; Samuelson et al., 2018), particular attention has focused on
the impact of agrochemicals. A key focus of research has been to understand the impact
of neonicotinoid-based insecticides on bees (Whitehorn et al., 2012; Godfray et al., 20145
Godfray et al., 2015; Stanley et al., 2015a; Rundlif et al., 2015; Goulson et al., 2015; Kessler et
al., 2015; Woodcock et al., 2016; Woodcock et al., 2017; Baron, Raine ¢& Brown, 2017b; Baron
et al., 2017a; Tsvetkov et al., 2017; Main et al., 2018; Arce et al., 2018; Siviter et al., 2018b),
leading to controversy worldwide and in some cases, legislative reassessment of their use.
Sulfoximine-based insecticides, which share a mode of action with neonicotinoids as
selective agonists of Nicotinic Acetyl Choline Receptors (NAChRs) (Zhu et al., 2011; Sparks
et al., 2013), are a more recent entry to the insecticide market, and are currently approved
for use in 81 countries around the world. In a recent horizon-scanning exercise involving
72 pollination biologists, sulfoximines were highlighted as an emerging potential threat to
pollinators, based on a lack of knowledge regarding their sub-lethal effects (Brown et al.,
2016).

Sulfoxaflor, the first branded sulfoximine-based insecticide, can negatively impact
bumblebee colony fitness, reducing worker production and subsequent reproductive
output (Siviter, Brown & Leadbeater, 2018a), and so the effects are comparable to those
observed with neonicotinoids (Whitehorn et al., 2012; Rundlof et al., 2015). A plethora
of research on neonicotinoids has linked small sub-lethal effects on bee behaviour at
the individual level to major impacts at the colony level, with neonicotinoid exposure
influencing bee foraging success and motivation, (Gill, Ramos-Rodriguez ¢ Raine, 2012;
Feltham, Park & Goulson, 2014; Gill ¢ Raine, 2014; Arce et al., 2017; Liimsd et al., 2018;
Muth & Leonard, 2019), homing success (Henry et al., 2012; Fischer et al., 2014), brood care
and thermoregulation (Crall et al., 2018). One way in particular that neonicotinoids may
influence bee behaviour is through impacts on bee cognition, and a recent meta-analysis
has confirmed the detrimental effects of insecticide exposure on learning and memory at
acute and field realistic regimes (Siviter et al., 2018b). As a systemic insecticide, sulfoxaflor,
like neonicotinoids, can be present in the nectar and pollen of plants following treatment,
meaning that foraging bees may be exposed either via the crop itself or through flowering
weeds present in fields or orchards during spray (Botias et al., 2015; Kyriakopoulou et
al., 2017). However, despite the similarity in mode of action between sulfoxaflor and
neonicotinoids, the potential impact of sulfoxaflor exposure on bee learning and memory
has not been tested.

In this study, we assay the impact of acute sulfoxaflor exposure on learning and memory
in bees based on two paradigms through which previous authors have identified adverse
effects of neonicotinoid exposure: a Proboscis Extension Reflex (PER) experiment (Stanley,
Smith & Raine, 2015b; Siviter et al., 2018b) and a Radial Arm Maze-based assay (RAM;
Samuelson et al., 2016). These paradigms are assays of (i) classical conditioning of olfactory
stimuli and (ii) working memory (also known as short-term memory) respectively, and
thus they may capture different aspects of foraging, although are unlikely to be mutually
exclusive. For example, learning to discriminate between olfactory stimuli in a PER task
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may emulate learning to discriminate between rewarding and non-rewarding flower
species, while RAM performance assays retention of short-term task-relevant information
such as the location of flowers that a bee has recently visited (Foreman ¢ Ermakova,
1998; Lihoreau, Chittka & Raine, 2010; Collett, Chittka ¢~ Collett, 2013; Samuelson et al.,
2016). Exposure to certain neonicotinoids, and other non-neonicotinoid insecticides,
has been shown to influence PER performance in both Apis and Bombus (Williamson,
Baker & Wright, 2013; Stanley, Smith & Raine, 2015b; Piiroinen ¢ Goulson, 2016; Siviter

et al., 2018b), while impacts on RAM performance have only been tested in bumblebees
(Samuelson et al., 2016). Given that sulfoxaflor and neonicotinoids both act as agonists
of nicotinic acetylcholine receptors (NAChRSs) (Sparks et al., 2013), we predicted that
sulfoxaflor exposure would have similar negative impacts on PER performance in Apis and
Bombus, and RAM performance for Bombus.

METHODS: PER—EXPERIMENT 1

Subjects and harnessing

Five bumblebee (Bombus terrestris audax) colonies, each with approximately 150 workers,
were purchased (Koppert Ltd, Haverhill, UK) and moved into wooden colony boxes
(28 x 10 x 18 cm) connected to flight arenas (100 x 70 x 50 cm) that contained an ad
libitum supply of sucrose solution (50° Brix) and pollen. Only individuals that had
been observed foraging on the feeder within flight arenas were subsequently used in the
experiment (Martin, Fountain ¢ Brown, 2018). Previous studies suggest that bumblebees
are more responsive when starved for a period of time (Stanley, Smith ¢ Raine, 2015b),
and consequently prior to all PER experiments involving bumblebees, we collected and
harnessed all potential subjects before leaving them overnight, and testing them the
following morning.

Returning foraging honey bees (Apis mellifera) were collected from the entrance of
five hives from a research apiary at Royal Holloway University of London. Honeybee
mortality is high when individuals are harnessed for a sustained period of time, and as a
result we collected and harnessed honeybees in the same day, leaving them for one hour
after harnessing, before randomly assigning them to a treatment group (see below) and
conducting the experiment. Bumblebees and honeybees were tested on different days,
and on any single test day, sixteen to forty bumblebees and honeybees were collected and
harnessed.

Insecticide exposure

Sulfoxaflor has been developed for a range of different crops, including as a seed treatment
for bee attractive crops, but its most common application is currently as a foliar spray
(Centner, Brewer ¢ Leal, 2018). Foliar spray applications result in short-term bursts of high
insecticide residues in the nectar of sprayed crops (United States Environmental Protection
Agency, 2016) and any concurrently flowering weeds. We thus based our estimates for
acute exposure on data for the residue levels found in honeybee-collected nectar of
cotton sprayed with sulfoxaflor from an Environmental Protection Agency (EPA) study,
which demonstrated that over an 11 day period nectar concentrations ranged from
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5.41-46.97 ppb (United States Environmental Protection Agency 2016; application
rate: 0.045 pounds (0.020 kg) of active ingredient per acre, applied twice). We derived
our sulfoxaflor treatments from a stock solution of 1 g dm™ sulfoxaflor (Greyhound
Chromatography and Allied Chemicals) in acetone, which was combined with sucrose
solution (50° Brix) to make three treatment groups: 2.4 pg dm— (2.4 ppb), 10 pg dm —?
(10 ppb), 250 pg dm (250 ppb; positive control) and the negative control (sucrose with
acetone only). Before training, we placed each bee horizontally (held in place with modelling
clay) and pipetted a 10u] droplet of sucrose solution containing the randomly-assigned
treatment solution onto a plastic surface, from which the bees could feed. Bees that did
not immediately drink were encouraged to extend their proboscis by antennal stimulation
with sucrose. Bees that did not consume the full quantity of sucrose solution were not used
in the experiment (excluded bumblebees N = 55, control = 13, 2.4ppb = 16, 10 ppb = 16,
250 ppb = 10; honeybees N = 17, control = 2, 2.4 ppb = 6, 10 ppb = 5, 250 ppb = 4).
After feeding, the bees were placed upright and left for an hour (Stanley, Smith ¢ Raine,
2015b).

Training protocol

We used an absolute conditioning proboscis extension reflex (PER) procedure in which
lavender scent (conditioned stimulus; CS) was forward paired with antennal stimulation
by sucrose solution (unconditioned stimulus; US; 50° Brix). The subjects were placed three
cm away from the odour tube that contained filter paper soaked in 4 ul of the lavender
essential oil. A programmable logic controller computer was used to blow a constant stream
of air containing the odours towards the subjects from the odour tube. The odour tube was
replaced every 20-30 trials to ensure that the odour was consistently strong throughout
conditioning. Bees were exposed to 5 s of clean airflow (no odour), followed by 10 s of the
odour. Six seconds after the start of odour exposure, the subject was presented with 0.8 pl
of untreated sucrose solution (50° Brix) from a syringe. A positive response was recorded
if the bee extended its proboscis in the first six seconds of odour presentation, before
antennal stimulation with the US, and was always rewarded by immediate delivery of the
sucrose solution. In the event of a negative response, we additionally recorded whether
the bee responded to the antennal stimulation (to ascertain that the subject was motivated
to extend its proboscis). Each subject received fifteen trials with an inter-trial interval of
approximately 12 min. To ensure that the bees were learning about the odour and not
other aspects of the experimental protocol, three non-scented probe trials were randomly
distributed between the 5th and 15th learning trials. Bees that responded to the unscented
stimulus in any probe trial were not included in the analysis (excluded bumblebees n = 10;
honeybees n=1). Each animal thus received 18 trials in total (15 test trials and 3 probe
trials).

Medium- and long-term memory tests, whereby the subjects were presented with the
conditioned odour in isolation for a single trial, were conducted with the same subjects 3 h
and 24 h after the last learning trials, respectively. Once the experiment was finished, bees
were frozen and their size recorded by measuring thorax width with electronic callipers
(Mitutoyo), three times, from which a mean value was taken. We recorded size because
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it may influence the rate at which the insecticide is absorbed; larger bees empty their gut
at a faster rate (Fournier et al., 2014) and previous studies have correspondingly found
size-dependent effects of acute insecticide exposure on cognition (Samuelson et al., 2016).

In total, we tested 240 bumblebees and 174 honeybees. Bees that did not extend their
proboscis in response to antennal sucrose stimulation in at least 5 learning trials were not
used (bumblebee N = 64, control = 17, 2.4 ppb = 14, 10 ppb = 16, 250 ppb = 17; honeybee
N =6, control = 1, 2.4 ppb = 1, 10 ppb = 2, 250 ppb = 1). A further 3 bumblebees were
removed from the experiment because they extended their proboscis before the odour
was presented. Five bumblebees died, as did 46 honeybees. One bumblebee was harnessed
poorly and thus not included, as were 10 honeybees. This resulted in final sample sizes of
102 bumblebees and 94 honeybees (bumblebees: control = 23, 2.4 ppb = 26, 10 ppb = 24,
250 ppb = 29: honeybees: control = 29, 2.4 ppb = 22, 10 ppb = 22, 250 ppb = 21).

Statistical analysis
We followed an information theoretic model selection approach. The initial model set
included a full model and all subsets, including a null model that contained solely the
intercept and “Colony” as a random factor. We selected a 95% confidence set of models
based on Akaike weights derived from AICc values. In cases where the 95% confidence set
contained more than one model, the models were averaged (Burnham ¢ Anderson, 2002)
(including the null if it was included within the confidence set) to produce parameter
estimates and 95% confidence intervals. Data collected for bumblebees and honeybees were
analysed separately due to potential differences between the species (see Siviter et al., 2018D).
Following Stanley, Smith ¢ Raine (2015b), we analysed three dependent variables to
identify sulfoxaflor effects on PER performance: (i) whether the bee responded to the CS
in the absence of antennal stimulation (hereafter: “positive response”) in at least one trial
overall (ii) the total number of positive responses (hereafter learning level) from bees that
learnt the association, and (iii) the trial that the bee first exhibited a positive response. We
used generalised linear mixed effect models with binomial or Poisson error structures, or
mixed effect Cox models, respectively, where treatment, bee size and their interaction were
specified as fixed factors, and colony as a random factor (see Tables S1 & S2). For medium-
and long-term memory, we analysed whether or not the bee exhibited a positive response
to the CS following the same method (binomial error structure). We used the packages,
Ime4 (Bates et al., 2015), MuMin (Barton, 2016), Coxme (Therneau, 2018), Hmisc (Harrell
& Dupont, 2018) and pscl (Jackman, 2017).

METHODS: RAM—EXPERIMENT 2
Subjects

Seven bumblebee colonies (B. terrestris audax), each with approximately 150 workers,
were obtained from Biobest (Agralan Ltd, Swindon, Wiltshire, UK) and upon arrival
each was transferred into a plastic bipartite nest box (28 x 16 x 10.5 cm, with a central
divider that allowed access between compartments). When transferring bees into the nest
box individual bees were tagged with unique number disks, allowing the identification of
individuals. During experiments, the nest box was attached to the radial arm maze (RAM;
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description below), with access controlled using sliding trap-doors. When the bees were
not being tested, gravity feeders were placed in the RAM with an ad libitum supply of 43°
Brix sucrose solution. Colonies were provided with approximately 7 grams of pollen in the
nest box 3 times a week. Colonies were used in succession rather than simultaneously, and
newly emerged bees were tagged daily throughout the experiment.

Radial arm maze

A radial arm maze classically consists of 8 arms, each of which contains a hidden food
reward (Foreman & Ermakova, 1998). Animals forage within the maze and search for
the food rewards, whilst avoiding re-visiting arms that they have already depleted, and
Samuelson et al. (2016) have previously confirmed that bumblebees use working memory
to minimize such revisits. We based our design on the set-up used by Samuelson et al.
(2016) but modified their original vertical design to create a horizontal version. The aim of
this modification was to reduce reliance on learnt movement rules by forcing subjects to
return to the centre of the maze between choices, as is usually the case for rodent versions
of the RAM (Olton & Samuelson, 1976; Foreman ¢ Ermakova, 1998). Our horizontal maze
was constructed from acrylic plastic, sealed together with non-toxic grey silicone (Bondit).
Each of the 8 arms contained a removable platform (7.2 x 2.6 x 0. five mm) upon which
the bees could land to access a small hole in the wall. By extending the proboscis through
this hole, bees could access a sucrose reward (43° Brix) that was not visible from the
platform (volume varied between stages; see below). After visitation, the platform could be
rapidly replaced with a clean alternative to prevent the use of scent marks to identify visited
arms. The availability of visual global landmarks (often a view of the laboratory) has been
shown to contribute to performance in a RAM for rodents and other animals (Foreman ¢
Ermakova, 1998; Wilkinson, Chan ¢ Hall, 2007), but (a) our laboratory regularly changes
in appearance and (b) light control was important for our video software. Thus, our maze
walls were opaque, but papered with a black and white panoramic photo of the laboratory
to allow bees to orientate.

Stage 1—Group training

The objective of this stage was to identify motivated foragers. Each morning before testing,
the RAM was set up with 10 pl 43° Brix sucrose solution on each landing platform. All
bees were then allowed into the RAM to forage on the landing platforms (platforms were
continuously reloaded with sucrose solution when drained). Only bees that were observed
foraging within the maze at this stage (by inserting the proboscis into the holes at the end
of each arm) proceeded to Stage 2 (Individual training).

Stage 2—Individual training

The objective of the individual training stage was for bees to learn the win-shift nature of
the RAM task, over the course of 10 training bouts. During each bout, bees were required
to visit all eight artificial platforms and then return to the nest box to empty their crop. At
the onset of each bout, each platform contained 10 w1 of sucrose solution (20 pl for the
first bout, to increase motivation). Rewards were not refilled after visitation, but landing
platforms were replaced with identical but clean replacements. Once the bee found the
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final reward, we increased the amount of sucrose solution in that arm (from outside the
maze) so that the bee’s crop was full, encouraging her to return to the nest box. Choices in
the RAM were recorded as either: Correct —feeding from platforms that had not yet been
visited, or Incorrect- attempting to feed from platforms that had already been depleted.

If a bee attempted to return to the nest box three times prior to visiting all landing
platforms, or if the trial exceeded 20 min, the bee was permitted to return to the nest box.
As with Samuelson et al. (2016), each bee completed 10 training bouts.

Stage 3—Pesticide exposure

Our pesticide exposure regime differed from that used in the PER regime because our
RAM experiment was designed to allow direct comparison with the results described by
(Samuelson et al., 2016) for thiamethoxam. Samuelson et al. (2016) aimed to mimic the
dosage received during one hour of foraging for nectar, whilst overcoming the problem
that feeding on a large volume of sucrose may reduce a bee’s motivation to participate in
the RAM. To that end, bees were only fed half of the volume of nectar that would normally
be consumed during such a foraging bout (0.5 x 37.7 mg), with a doubled concentration
of sulfoxaflor. To allow for direct comparison, we followed the same approach here (and
bumblebees thus received a higher dosage than those in the PER treatment groups described
above). Each test subject was intercepted as it was returning to the RAM after emptying
its crop following the 10th training bout. They were placed into a plastic beaker, and fed
18.85 pl of sucrose solution from the randomly assigned treatment group. We included
four treatment groups, intended to mimic foraging on crops with nectar containing either
0 ppb (control), 5 pg dm™ (5 ppb), 10 pg dm=> (10 ppb) or 250 g dm=> (250 ppb
or positive control) of sulfoxaflor, so bees from each treatment group received 0, 0.045,
0.091 & 2.5 ng respectively. After consumption, the bees were held in the plastic beaker for
45 min before being returned to the nest (Samuelson et al., 2016). 60 bees were originally
trained on the RAM but 2 failed to re-commence foraging after the exposure stage (N
values, control = 14, 5 ppb = 15, 10 ppb = 15, 250 ppb n = 14).

Stage 4—Test trial

Following exposure, the bees were presented with the exact set up they had experienced in
the training phase of the experiment (phase 2) and tested one final time. After completing
the task bees were collected and frozen and, at a later date, we measured their thorax width.

Statistical analysis

As with experiment 1, we used an information theoretic model selection approach when
analysing each dependent variable and, as in previous work (Olton ¢ Samuelson, 1976;
Foreman ¢ Ermakova, 1998; Samuelson et al., 2016), three different measures were chosen
to assess performance; (i) total revisits to platforms which have been previously visited,
(i) the number of correct choices made before making a revisit and (iii) the proportion
of correct choices in the first eight visits. For all dependent variables, treatment, bee size
and the interaction between them were included as fixed factors with colony included as
a random factor. To account for overdispersion, we used a generalised linear model with
a negative binomial distribution error structure (glm.nb) to analyse total revisits, and a
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generalised linear model (glm) with a Poisson distributed error structure to analyse the
number of correct choices in the first 8 visits. A mixed effect cox model (coxme) was
used to analyse correct choices before first revisit. All analyses were conducted in R studio
(version 1.1.419) using the R packages lme4 (Bates et al., 2015), MuMin (Barton, 2016),
Coxme (Therneau, 2018), AER (Kleiber ¢» Zeileis, 2008), MASS (Ripley ¢ Venables, 2002),
Hmisc (Harrell ¢ Dupont, 2018).

RESULTS: PER—EXPERIMENT 1

For our first measure of learning (production of at least one conditioned response to the
stimulus), we found no evidence that acute sulfoxaflor exposure influenced bumblebees
(Fig. 1A, glmer, 2.4 ppb parameter estimate (PE) = —0.00, 95% CI [—0.34 to 0.33]; 10
ppb PE = 0.00, 95% CI [—0.35 to 0.36]; 250 ppb PE = 0.05, 95% CI [—0.43 to 0.53])
or honeybees (Fig. 2A; glmer, 2.4 ppb PE = —1.30, 95% CI [—14.19 to 11.60; 10 ppb PE
= —1.26, 95% CI [—14.82 to 12.31]; 250 ppb PE = —7.32, 95% CI [—53.10 to 38.45]).
Learning level (number of positive responses) was also not influenced by sulfoxaflor
exposure (bumblebees, Fig. 1B; glmer; wi (treatment) = 0.017; honeybees, Fig. 2B; glmer,
2.4 ppb PE = 1.18, 95% CI [—8.23 to 10.59]; 10 ppb PE = 1.05, 95% CI [—6.93 to 9.04];
250 ppb PE = 0.31, 95% CI [—4.11 to 4.72]). Finally, there was no evidence to suggest
that sulfoxaflor exposure influenced the speed at which either bumblebees or honeybees
learnt the olfactory association (bumblebees, Fig. 1C, coxme, 2.4 ppb PE = —0.00, 95% CI
[—0.93 to 0.78]; 10 ppb PE = —0.00, 95% CI [—0.91 to 0.87]; 250 ppb PE = 0.03, 95% CI
[—0.39 to 1.22]; honeybees, Fig. 2C; coxme, 2.4 ppb PE = —0.11, 95% CI [—0.72 to 0.51];
coxme, 10 ppb PE = —0.02, 95% CI [—0.34 to 0.29]; coxme, 250 ppb PE = —0.01, 95%
CI [—0.30 to 0.28]), suggesting no influence of acute sulfoxaflor exposure on olfactory
conditioning performance in either species.

Similarly, there was no impact of sulfoxaflor exposure on either bumblebee or honeybee
memory at 3 h after training (bumblebee; Fig. 3A; glmer, 2.4 ppb PE = 0.02, 95% CI [—0.59
to 0.63]; 10 ppb PE = —0.07, 95% CI [—0.98 to 0.83]; 250 ppb PE = 0.06, 95% CI [—0.62
to 0.75]; honeybee; Fig. 3C; wi (treatment) = 0.033) or at 24 h after training (bumblebee;
Fig. 3B; wi (treatment) = 0.042; honeybee ; Fig. 3D; glmer, 2.4 ppb PE = —0.39, 95% CI
[—1.79 to 1.02]; 10 ppb PE = —0.36, 95% CI [—1.66 to 0.94]; 250 ppb PE = 0.04, 95% CI
[—0.79 to 0.88]).

RESULTS: RAM—EXPERIMENT 2

We found no statistical support for an effect of sulfoxaflor exposure on total revisits
(Fig. 4A; glm.nb, 5 ppb treatment PE = 0.24, 95% CI [—0.56 to 1.05]; 10 ppb PE = 0.16,
95% CI [—0.46 to 0.79]; 250 ppb PE = 0.23, 95% CI [—0.55 to 1]) or on the proportion
of correct choices in the first 8 visits of bumblebees following sulfoxaflor exposure (Fig.
4B glm, (wi (treatment) = 0.038). Similarly, we found no statistically significant effect of
sulfoxaflor exposure on the number of correct choices before the first revisit (Fig. 5; coxme,
5ppb PE = 0.55, 95% CI [—0.54 to 1.64]; 10 ppb PE = 0.25, 95% CI [—0.48 to 0.98];
250 ppb PE = 0.49, 95% CI [—0.52 to 1.51]), suggesting no impact of acute sulfoxaflor
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Figure 1 Bumblebee olfactory learning. The performance of bumblebees in an olfactory learning task

(A) the proportion (=SEM) of bumblebees that learnt the olfactory association (B) the learning level

(£SEM) of the bees that did learn the association and (C) the trials in which bees learnt the association

(£SEM) in reference to trial number. (Control n =23, 2.4 ppb n = 26, 10 ppb n =24, 250 ppb n=29).
Full-size &l DOI: 10.7717/peer;j.7208/fig-1

exposure on bumblebee working memory. Further analysis also suggested no impact on

bumblebee behaviour (see Supplemental Information).

DISCUSSION

We found no evidence to suggest that acute sulfoxaflor exposure influenced bumblebee

or honeybee olfactory conditioning or bumblebee working memory, even at the highest
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concentrations of exposure tested (250 ppb). Given the range of dosages we tested, which
included positive controls that far exceeded levels likely to be found in the field, it is unlikely
that acute sulfoxaflor exposure in adult bees will influence cognition after environmental
exposure, at least with regard to olfactory conditioning and working memory performance.

We used two experimental paradigms to investigate the impact of acute sulfoxaflor
exposure on bee learning and memory. Although a wide variety of different paradigms
can be used to assess bee cognition (Bernadou et al., 2009; Zhang ¢ Nieh, 2015

Siviter et al. (2019), PeerdJ, DOI 10.7717/peerj.7208 10/22


https://peerj.com
https://doi.org/10.7717/peerj.7208/fig-2
http://dx.doi.org/10.7717/peerj.7208

Peer

1.0 H 1.0 H
A) B)
0.8 — 0.8 —
T
& g
3 B
2 06 S 06
2 g
g 2
3 o
2 o}
8 04+ 2 04 -
a Ke]
5 €
2 =1
@ )
0.2 0.2
0.0 0.0
T T T T T T T T
Control 2.4ppb 10ppb 250ppb Control 2.4ppb 10ppb 250ppb
Treatment group Treatment group
1.0 H 1.0 H
C) D)
0.8 — 0.8 —
T
5 5
g 3
T 06 3 0.6
g 5
> a
8 @
<] o
E o
17
S 04 o S 04
2 )
s c
Q S
T T
0.2 4 } l I 0.2 4
0.0 0.0
T T T T T T T T
Control 2.4ppb 10ppb 250ppb Control 2.4ppb 10ppb 250ppb
Treatment group Treatment group
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Limsi et al., 2018; Muth, Francis ¢ Leonard, 2019) we chose to use both PER and the
RAM, in combination, as these paradigms allow us to consider the impact of sulfoxaflor
exposure on working memory (also known as short-term memory), medium-term
and long-term memory (Menzel, 2012). Interestingly, in both of these paradigms, the
neonicotinoid thiamethoxam, one of the three neonicotinoids insecticides banned from
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outdoor agricultural use within the European Union, has been shown to influence
performance at comparable dosages (Stanley, Smith ¢ Raine, 2015b; Samuelson et al.,
2016). Both neonicotinoids and sulfoximine-based insecticide share the same mode of
action, acting as selective agonists of Nicotinic Acetyl Choline Receptors (NAChRs) (Zhu
et al., 2011; Sparks et al., 2013). Acute neonicotinoid exposure can inactivate the mushroom
bodies of bee brains (Palmer et al., 2013), which are essential for learning and memory in
bees (Menzel, 2012). The effects of sulfoxaflor exposure on bee neurology have not been
explored, but could provide useful information in understanding why neonicotinoids,
but not sulfoximine-based insecticides, influence bee cognition, at least under these
experimental paradigms and dosages. Ultimately, sulfoxaflor could be used as a reference
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substance to understand why some insecticides, which act on nicotinic acetyl choline

receptors (NAChRs) have a negative impact on bee cognition, while others do not.

We tested the impact of acute sulfoxaflor exposure (rather than chronic exposure) on bee

learning and memory. A recent meta-analysis showed that chronic insecticide exposure can

have larger effects on bee memory than acute exposure for adult bees, and so we cannot rule

out that more prolonged exposure would have identified an effect of sulfoxaflor exposure.

However, an acute dosage potentially mimics the exposure regime of a foraging adult bee
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in the field more closely, because individuals may forage on a range of different crops and
flowers in addition to the treated crop, over an extended period of time. Chronic exposure
is nonetheless clearly relevant for larval brood, and the same meta-analysis highlighted
that exposure as a larva is more likely to have a negative impact on bee learning than
adult exposure (Siviter et al., 2018b). Larval exposure to thiamethoxam has been shown
to influence synaptic density in the mushroom bodies of bee brains (Peng ¢ Yang, 2016)
and increase neural vulnerability to mitochondrial dysfunction (Moffat et al., 2015), which
may be linked to documented effects of exposure on cognitive function (Klein et al., 2017).
Thus, although our results show no effect of acute sulfoxaflor exposure on bumblebee or
honeybee cognition, further research needs to be conducted to understand the potential
impact of chronic exposure, both in adults and larvae. Furthermore, given the dearth of
data on non-Apis/Bombus bees (Siviter et al., 2018b), researchers should prioritise assessing
the impact of sulfoxaflor on non-social bees.

The hypothesis that negative effects of neonicotinoid exposure on bees are mediated
in part by the widely-documented sub-lethal effects on learning and memory described
above, which may impact upon bee foraging behaviour and thus potentially colony
productivity, has received much attention (Klein et al., 2017; Siviter et al., 2018b). However,
neonicotinoid insecticides have many other sub-lethal effects on bee behaviour and
physiology (Wu et al., 2012; Laycock et al., 2012; Baron, Raine ¢ Brown, 2017b; Baron et al.,
2017a; Crall et al., 2018) and any causal link between reduced cognitive performance and
foraging efficiency remains to be established, because data linking bee cognitive traits and
foraging efficiency are difficult to collect. The evidence that does exist is contradictory.
Raine & Chittka (2008) found a positive association between the nectar collection rate of
workers allowed to forage outdoors, and the visual learning performance of their sisters
from the same colony, but Evans, Smith ¢ Raine (2017) found no correlation between
individual visual learning performance and nectar collection rate. A better understanding
of the relationship between bee cognitive traits and foraging efficiency is clearly important
if we are to identify and mitigate against the sub-lethal impacts that underlie negative
impacts of neonicotinoid insecticide exposure on bumblebee colony reproductive output
(Whitehorn et al., 2012; Rundlof et al., 2015; Woodcock et al., 2017). In contrast, our findings
suggest that sub-lethal effects on learning and memory are unlikely to underlie the negative
impacts of sulfoxaflor on colony reproductive output in bumblebees.

If memory and learning are unaffected by exposure, what other mechanisms might
underlie the impact of sulfoxaflor on bumblebee colony fitness (Siviter, Brown ¢
Leadbeater, 2018a)? While previous work on impacts of neonicotinoids on learning
and memory (Samuelson et al., 2016; Siviter et al., 2018b) inspired the work reported
here, these insecticides have been demonstrated to produce a range of sublethal impacts,
beyond cognitive effects. These include reductions in food intake, foraging motivation,
thermoregulatory activity, nursing behaviour, ovary development, and egg laying (Laycock
et al., 2012; Baron, Raine ¢ Brown, 2017b; Liamsi et al., 2018; Crall et al., 2018). Impacts of
sulfoxaflor on bumblebee colony fitness appear to be driven by reduced worker production
at the early stage of colony development (Siviter, Brown ¢ Leadbeater, 2018a), but our
results here suggest that this is unlikely to be due to impacts on worker learning or memory
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in food-related tasks. Consequently, we suggest that future work should focus on examining
potential sub-lethal impacts on ovary development and egg laying, which could directly
relate to reductions in worker production.

CONCLUSIONS

Sulfoximine-based insecticides are becoming globally important, and sulfoxaflor is now
registered for use in 81 countries, including a number of European Union member states
(European Commission, 2018). Although mitigation measures can reduce the likelihood
of pollinator exposure (Centner, Brewer ¢» Leal, 2018), uptake of such measures varies
widely across legislative regimes. Previous work with neonicotinoids demonstrated the
importance of understanding sub-lethal effects of insecticides on bee health. Here we find
no evidence for an impact of acute sulfoxaflor exposure on bee olfactory conditioning
or bumblebee working memory, despite the occurrence of such impacts when using the
same protocols with neonicotinoid exposure. This suggests that the impacts of sub-lethal
exposure in learning and memory are unlikely to be the mechanism behind impacts of
sulfoxaflor on colony reproductive success (Siviter, Brown ¢ Leadbeater, 2018a). Further
studies are needed to understand how, and under what conditions, sulfoxaflor may impact
bee health. Such data will enable more informed regulatory and policy decisions on the
future use of this insecticide in crops that attract bees.
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